How Do Hitters Perform With Their Eyes Wide Shut?

Before a slugger blasts a home run over the wall, he must first see a pitch that he wants to hit. But, what if the hitter couldn’t see the pitch? Mike Richmond helps answer the question: How do hitters perform with their eyes wide shut? 

Hitting a baseball solidly enough to reach base safely is often said to be the most difficult challenge a player faces in the major team sports. Even the best batters fail more than half the time. It takes years of practice and lightning-quick reflexes to swing a thin cylinder of wood into the center of a speeding sphere less than three inches in diameter. Common sense dictates that a good batter’s vision must be nearly perfect. Two well-known examples are Ted Williams, who had 20/10 visual acuity, and Gregg Jefferies, who could read numbers written on pitched balls before he struck them.

It would be impossible, then, for a batter to make solid contact if his eyes were closed – right?

The Experiment

A recent article, published in the journal PLOS ONE, describes experiments which show that as long as a batter can see the first half or so of a pitch’s trajectory, he can still put the bat in the correct place to make solid contact. The authors of this study, Contribution of Visual Information about Ball Trajectory to Baseball Hitting Accuracy, are a group of sports scientists in Japan. The lead author, Takatoshi Higuchi, works at Ritsumeikan University in Kyoto, while his co-authors are based in Waseda University, Nara Women’s University, and, in the case of former Japanese big-league pitcher Masakazu Watanabe, Fukuoka University. Their research was supported by the Japan Society for the Promotion of Science, which – disclaimer – has kindly funded some of my own collaborations with Japanese scientists.

The study’s setup was simple: the scientists placed a pitching machine at the same distance from home plate as a real human’s release point, and trained it to throw balls with a standard, repeatable speed and spin. They put a Japanese college field-position player into the batter’s box and gave him some practice swings. When the batter was ready, they started the experiment.

Each batter was given 36 swings. Before each pitch, a computer chose at random one of three conditions and sent a signal to the special set of eyeglasses that the batter was wearing. Under the first condition, called “NO”, the lenses acted like plain old transparent glass, so the batter could see the ball for its entire trajectory. Under the second condition, called “R+150”, liquid crystals in the lenses would become opaque exactly 150 milliseconds after the ball left the pitching machine; thus, the batter would see only the initial behavior of the pitch. For the final condition, “A-150”, the lenses would turn opaque 150 milliseconds before the ball reached home plate; this blocked the batter’s view of the final portion of the pitch.

The batters were given no warning as to how their eyeglasses would behave during each pitch. The computer modified its random selections slightly so that each batter would get 12 swings under each condition.

After throwing 36 pitches at a fixed speed, the pitching machine was instructed to switch to a second speed for a second set of 36 attempts. The two choices were a “changeup,” at 71.8 MPH, and a “fastball” at 90.7 MPH; each had backspin of 1,836 RPM, typical for professional levels of competition. Some participants saw the changeup first, others the fastball. During this second set, the computer again instructed the eyeglasses to switch between the three behaviors.

What did the batters see?

Let’s begin with a brief description of what a batter would see under ordinary conditions. I numerically integrated the motion of a ball with the properties described in Higuchi et al., giving it the initial directions necessary to yield a strike on the outer half of the plate. The time required for the ball to reach the batter in my simulations agrees well with the times recorded in the study, differing by 22 milliseconds for the changeup and much less for the fastball. You can read a detailed description of the calculations used to create these figures here.

Cant See IMG 1 Fixed

The figure above shows the trajectory of each type of pitch. Symbols appear every 0.01 second (10 milliseconds), with a large circle marking the location every 0.1 second. As you can see, the fastball takes a nearly direct route toward the strike zone, while the changeup follows a graceful arc to reach the same end point. The combination of its longer path and slower speed cause the changeup to take roughly an extra 0.1 second to reach the batter.

How much of these trajectories did the batters see during the experiment? Let’s first examine the fastball.

Cant See IMG 2 Fixed

The figure above shows the three options, using big, bold symbols to denote when the ball was visible, and small dots to indicate times when the batter could not see the ball. In the “R+150” case, the batter could see only the first one-third of the pitch.

Cant See IMG 3 Fixed

The situation was even more extreme for the changeup: nearly three-quarters of the motion was invisible under the “R+150” option. Note that the difference between the “R+150” and “A-150” cases is larger for the changeup than the fastball; does that mean that the performance of batters will show a larger gap, too?

Bullseye on the sweet spot

That brings up a good question: just how can one quantitatively measure the batter’s ability to strike the ball? In an ordinary game of baseball, we allow the batter to hit the ball into a large playing area, dotted here and there with fielders, and count the number of times the batter can run to first base before a fielder can catch the ball or throw him out. There are so many variables – where are the fielders positioned? how fast is the batter? are other runners on base? which way is the wind blowing? – that it takes hundreds and hundreds of trials to determine with any precision just how well the batter did.

To save the time and effort of organizing an entire team of fielders, Higuchi and his collaborators devised a simple way to measure the quality of contact between bat and ball. They marked the “sweet spot” of their bats with a target and asked the batters to make contact at that location. Using high-speed cameras, they then filmed each swing and determined the offset between the target and the actual spot at which the ball touched the bat.

Cant See IMG 4

This difference between target and actual contact location will stand for the quality of the swing. If the batter strikes the ball close to the target, the ball will rebound nearly straight out into the field at high speed: a line drive and a probable hit. If the batter makes contact far from the target, the ball will bounce off with less energy, often at an acute angle, likely turning into an easy fly ball or ground out.

The authors also recorded the position of the point of contact in a third dimension – the distance forward from the point of home plate toward the pitcher’s mound – but I’ll omit those measurements here, as they weren’t very informative.

The big question thus becomes: Will batters whose view of the ball is interrupted be able to square up and make contact as close to the target area as those who can see the entire trajectory?

The results

Let’s examine the results first in pictorial form. The figures below are taken directly from the article by Higuchi et al.; specifically, Figure 2. Consider first the “changeup” pitches. Each panel below shows the offset between contact and target for each pitch; each batter is identified by a different color. The large, red diamond shows the mean location, and the black error bars show the standard deviation from the mean. The symbols which lie outside the outline of the bat represent swings and misses.


The top panel, corresponding to trials when the batters’ view was blocked 150 milliseconds after release (“R+150”), is peppered by symbols in all directions, with a wide scatter. The middle panel, showing trials when the view was blocked 150 milliseconds prior to the ball’s arrival (“A-150”), has a much tighter distribution, especially in the vertical (“Z”) direction. The bottom panel, for trials when the batters suffered no visual impairment (“NO”), doesn’t look all that different from the middle one – does it?

It seems that batters did not gain much advantage from seeing the ball as it covered the final 15 feet or so of its journey. Could that really be true?

Well, we can examine the results of the “fastball” pitches to check. Once again, the figure is taken straight from the original article.


There are some small differences between these figures and the previous ones. If you look carefully, you can see that the mean location for contact with the fastball was consistently higher on the bat – farther above the midplane – than it was for the changeup. That’s not a big surprise; a good fastball with plenty of backspin will drop less than batters expect, which is why power pitchers tend to get a lot of fly ball outs. The overall scatter is also somewhat larger for the fastball than the changeup; again, just as one would expect.

The most interesting aspect of these results is the same pattern seen earlier: the quality of contact under the “A-150” condition is roughly equal to that of the “NO” condition, while the quality is lower for the “R+150” trials. Moreover, the difference in quality appears most clearly in the vertical (“Z”) direction.

Higuchi et al. perform a number of statistical tests on these results, but the bottom line is relatively straightforward. In the authors’ own words:

Post hoc multiple comparison tests for the variability of impact Z deviation under the slow ball and fast ball settings showed that the standardized variability of impact Z deviation was significantly larger under the R+150 condition than under the A-150 (p < 0.05) and NO (p < 0.05) conditions.

If you prefer graphics to words and numbers, just take a look at Figure 4 from the article (to which I’ve added a few annotations):

Cant See IMG 7

What have we learned?

One of the simplest ways to summarize this experiment is “batters learn more from seeing the early portions of a pitch than the late portions.” This wasn’t unexpected. After all, people have known for many years that a batter needs to make up his mind to swing or take a pitch long before it reaches him. Recall that a fastball reaches the plate about 0.45 seconds after it leaves the pitcher’s hand. Since it takes a batter about 0.23 seconds to accelerate the bat from rest to maximum speed while moving it into the path of the ball, he needs to make the decision to swing at most 0.22 seconds after the release. In other words, during this brief period, the batter must be able to predict the final location of the ball accurately enough to know “I should start swinging now,” as well as “I should put the bat about two inches below my belt for this one.”

There are good physiological reasons why humans key on the early part of the trajectory: it’s the only portion we can see clearly. “What?” you may say, “Isn’t the ball harder to see when it’s far from the batter?” Well, yes, it does appear smaller, that’s true. But during the first half of its trajectory, the ball is moving slowly in apparent angular position. Look at the diagram below, which shows a batter’s-eye view of incoming pitches.

Cant See IMG 8

This is an “angular position” diagram, showing the angular displacement of the ball away from the release point. Both horizontal and vertical axes are marked in degrees; a value of -90 on the vertical axis, for example, would mean that the batter was looking down at his feet. As in earlier diagrams, dots mark the progress of the ball at intervals of 0.01 seconds.

Note that during the first 0.23 seconds of the ball’s journey, before it reaches the red box, it moves by less than ten degrees: the ball just grows larger and larger as it comes nearly straight at the batter. It’s easy for human eyes to follow the ball at this time. But as the ball comes closer, its angular position changes more and more rapidly; the fastball is moving by nearly ten degrees in the final 0.01 second as it crosses the plate. The eyes simply can’t keep up with it, even if the batter twists his head to help. If, by some miracle, a batter could see the ball clearly 0.01 second before it hit the bat, the visio-motor delay (there’s a fancy term I learned from this article!) would prevent him from making any adjustments.

Sports scientists have known for quite some time that batters of all sorts – including those who play cricket as well as baseball – must be basing their actions on the early segments of the ball’s motion. This study, however, provides precise, quantitative measurements of the phenomenon.

What other conclusions can we draw from this experiment?

If you review the “location-of-contact” graphs, you will see that the points spread out farther in the X direction (along the horizontal axis of the bat) than they do in the Z direction (in the vertical direction). The authors note that errors in the timing of a swing cause relatively large deviations from the target in the X direction (swing too late, for example, and the ball will strike closer to the handle) but only small deviations in Z (since the swing is relatively level through the strike zone). However, small errors in the timing are less critical to success than small errors in vertical position of the bat: a deviation of 60 mm in X may simply send the ball to right or left field, rather than up the middle, and still result in a hit. A deviation of 60 mm in Z, on the other hand, may lead to a pop fly or grounder. Timing the swing correctly may be one of the most difficult aspects of hitting, but, fortunately, it is at least somewhat forgiving.

If you look very carefully at the “location-of-contact” graphs for the R+150 condition, you will see that the scatter in the Z direction is a bit smaller for the changeup than the fastball. The authors infer that batters used the extra time (about 0.10 seconds) before the ball’s arrival to decide more accurately when and where to swing. They therefore agree with earlier studies that swinging motions which require less time (due to high accelerations and/or compact trajectories) will lead to more success:

the present result supports the idea that a shorter swing time and faster bat swing speed are beneficial for successful hitting because a longer time is available for making these decisions

Is it possible that this experiment on college players does not accurately represent the results one would find among professionals? Well, of course, it’s possible. The authors point out, however, that the bat speed of the college players in this experiment was equal to that of a set of American professional players measured in an earlier experiment, Hitting a Baseball: A Biomechanical Description by Welch et al., Journal of Orthopaedic & Sports Physical Therapy, vol. 22, p. 193 (1995).  In addition, each of the players tested had been in organized baseball for at least 9 years.  It would be very interesting to see the results of some professional players tested in the same manner.  I hope that Higuchi and his colleagues can convince a few to give it a try.

Follow us on Twitter at @SoSHBaseball.

Previous articlePerils of Prospect Punditry
Next articleThis Week In Baseball Writing: February 25, 2016
Michael grew up on the South Shore of Massachusetts, but rebelled against his parents by rooting for the Orioles (eventually, he came to his senses). After receiving his Ph.D. in Astronomy from UC Berkeley, he spent five years as a post-doc at Princeton working on the Sloan Digital Sky Survey. He now lives in Rochester, NY, studying supernovae and listening to baseball games far too often.


  1. Mike
    Thank you for sharing. I enjoyed the clarity. Altering the brains ability to process space and time efficiently is key to measurable advancements in hitting. FYI, it is possible that the hitter brain might not be seeing the ball at all. Light has no tangible properties inside the brain so, as it travels through neurological space it is the space that is the information provider and not the object in flight. By defining the strike zone space with visual prompters it is possible to alter the neurons representing that space, therefore making it possible for the brain to capture more light or electrical information from the pitch. Science isn’t optional….. We are entering a new era in data collection and experimentation that will have profound effects on baseball and softball. If you would like to see some of our research give me a call sometime.